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ABSTRACT
Computer vision-based traffic object detection plays a critical role in road traf-
fic safety. Under hazy weather conditions, images captured by road monitoring 
systems exhibit three main challenges: significant scale variations, abundant 
background noise, and diverse perspectives. These factors lead to insufficient 
detection accuracy and limited real-time performance in object detection algo-
rithms. We propose AMC-YOLO an improved YOLOv11-based traffic detection 
algorithm to address these challenges. In this work, we replace the C3k block's 
bottleneck module with our novel attention-gate convolution (AGConv), which 
improves contextual information capture, enhances feature extraction, and 
reduces computational redundancy. Additionally, we introduce the multi-di-
lation sharing convolution (MDSC) module to prevent feature information loss 
during pooling operations, enhancing the model's sensitivity to multi-scale 
features. We design a lightweight and efficient cross-channel feature fusion 
module (CCFM) for the path aggregation neck to adaptively adjust feature 
weights and optimize the model's overall performance. Experimental results 
demonstrate that AMC-YOLO achieves a 1.1% improvement in mAP@0.5 and a 
2.7% increase in mAP@0.5:0.95 compared to YOLOv11n. On graphics process-
ing unit (GPC) hardware, it achieves real-time performance at 376 (FPS) with 
only 2.6  million parameters, ensuring high-precision traffic detection while 
meeting deployment requirements on resource-constrained devices.
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1 Introduction

With the rapid increase in private car ownership and 
the growing complexity of public transportation sys-
tems, traffic congestion, vehicle collisions, and other 
traffic safety issues have become increasingly severe. 
Intelligent transportation systems, relying on deep 
learning-based object detection, can accurately and in 
real-time acquire road traffic flow information. This 
supports informed decision-making by managers, 
effectively reducing congestion and improving road 
safety. However, under haze weather conditions, 
reduced visibility increases image noise, making 
it difficult to correctly identify and detect vehicles, 
pedestrians, and other targets (Fig. 1). This presents a 
significant challenge to convolutional network-based 
object detection systems.

In recent years, convolutional neural network (CNN) 
technology has developed rapidly and widely applied 
in various fields, particularly in image processing 
and video-related tasks [1]. CNNs, with their unique 
network structures and convolutional operations, can 
automatically extract features from input data and 
perform effective classification and regression tasks. 
Depending on the processing flow, common object 
detection methods are categorized into two-stage 
and single-stage object detection. Two-stage object 
detection first generates candidate regions through 
a region proposal network (RPN), then classifies and 
precisely locates these regions. For instance, three rep-
resentative approaches include: (a) the seminal R-CNN 
framework [2]; (b) spatial pyramid pooling networks 
(SPP-Net) [3], introducing spatial pyramid pooling to 
mitigate feature redundancy; and (c) region-based fully 
convolutional networks (R-FCN) [4] employing a fully 
convolutional architecture. These methods can better 
filter background noise for accurate predictions, but are 

slower in detection speed. Single-stage object detection 
achieves faster processing speeds. This approach typi-
cally uses a single neural network model to complete 
the task, including object localization and classification 
(e.g., YOLO [5], single shot multiBox detector (SSD) [6], 
RetinaNet [7]). However, it faces the challenge of low 
detection accuracy.

In 2017, Vaswani et al. [8] proposed the Transformer 
model, which became dominant in natural language 
processing. The Transformer model introduced the 
self-attention mechanism, replacing traditional recur-
sive and convolutional structures. The self-attention 
mechanism allows the model to globally interact with 
any position in the input sequence during decoding, 
enhancing the model's expressive power and gener-
alization ability. Recent studies by introduced Vision 
Transformers (ViT), successfully applying the Trans-
former architecture to computer vision. This study 
demonstrated that pure Transformers applied directly 
to image patch sequences can perform exceptionally 
well in image classification tasks. Transformers are not 
limited by the locality of convolutional operations and 
can globally focus on dependencies between image 
feature patches, while requiring fewer computational 
resources than CNNs.

On the other hand, object size variation analysis in 
road surveillance videos poses significant challenges, 
where most targets appear at medium scales while 
many others exhibit extreme (either very small or large) 
dimensions. Traditional single-layer convolutional 
neural networks produce feature maps with inherent 
limitations, including uniform receptive fields and 
constrained multi-scale representation capacity. There-
fore, developing scale-adaptive feature representation 
frameworks has become a critical research challenge. 
Existing studies typically employ static fusion strate-
gies via direct stacking or channel-wise concatenation 

Figure 1 The traffic detection challenges: (a) small target, (b) shape change, and (c) object occlusion.
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of shallow detail features with deep semantic features. 
However, this approach fails to consider the non-uni-
form contribution patterns of multi-scale features 
in both channel and spatial dimensions, potentially 
causing fine-grained information loss or semantic ambi-
guity. Our key innovation introduces learnable weights 
to dynamically assess the importance of different input 
features, while implementing iterative multi-scale 
fusion through coordinated top-down and bottom-up 
processing pipelines. This architecture enables the 
network to autonomously learn cross-scale spatial/
temporal correlations and inter-level channel-wise 
relationships, establishing a more robust and discrim-
inative scale-invariant feature representation system.

The degradation of sample quality under hazy con-
ditions and the complexity of traffic scenes necessitate 
detection systems that balance recognition accuracy 
with computational efficiency. Consequently, the 
model must accomplish high-precision multi-scale 
object detection within constrained computational 
resources. This paper introduces several enhancements 
to YOLOv11n aimed at improving model performance 
while reducing inference time. The principal contribu-
tions are as follows.

(1) We propose the attention-gate convolutional  
(AGConv) block, which incorporates both the convo-
lutional additive self-attention (CAS) [9] module and 
convolutional gated linear units (CGLU) [10] module to 
augment the C3k2 module in YOLOv11n. The enhanced 
C3k2 module significantly improves feature extraction 
capabilities while simultaneously reducing the model's 
computational burden.

(2) We present the multi-dilation shared convolution 
(MDSC) module, which employs convolutional layers 
with varying dilation rates for multi-scale feature 
extraction. This design enhances sensitivity to objects 
at different scales and improves contextual information 
integration. To optimize parameters, we implement 
shared convolutional kernels across dilation rates 
rather than using separate layers for each rate. This 
approach effectively minimizes parameter redundancy 
while enhancing model efficiency.

(3) The cross-channel fusion module (CCFM) repre-
sents an advanced feature fusion mechanism designed 
to enhance YOLOv11’s feature pyramid network 

(FPN). By incorporating contextual guidance and 
adaptive feature adjustment during multi-scale fusion, 
it ensures robust object detection in complex scenarios. 
The module employs channel-wise squeezing and 
excitation to selectively compress and amplify feature 
representations, enabling dynamic contextual infor-
mation utilization. Through learned adaptive weight 
allocation for feature reorganization, the framework 
improves representation efficacy and directs attention 
to target-relevant patterns. This mechanism substan-
tially enhances detection accuracy by emphasizing 
discriminative features while suppressing irrelevant 
information.

2 Related work

In recent years, the rapid advancement of deep learn-
ing technologies has led to widespread applications of 
object detection across various domains. Contempo-
rary object detection models are generally categorized 
into two-stage detectors (e.g., R-CNN, SPP-NET, and 
R-FCN [2]–[4]) and single-stage detectors (e.g., SSD, 
RetinaNet, and YOLO [5–7]). The YOLO, as a single 
neural network-based detection framework, demon-
strates remarkable efficiency for real-time applications. 
However, earlier versions exhibited limitations in 
generalization capability and detection accuracy, 
prompting numerous researchers to focus on architec-
tural improvements.

Early YOLO iterations (v1–v3 [11]) employed Dark-
net backbones with pyramid pooling layers to balance 
efficiency and accuracy, albeit with increased compu-
tational demands. Subsequent versions (v4–v6 [12]) 
adopted CSPDarknet-53 backbones and transitioned 
to anchor-free mechanisms, significantly reducing 
model complexity while maintaining state-of-the-art 
performance. Nevertheless, these models still face chal-
lenges in fully leveraging contextual information for 
precise detection in complex scenarios. Recent advance-
ments (v8–v11) have preserved effective historical  
designs while incorporating cutting-edge technologies, 
achieving further improvements in both lightweight 
design and accuracy. For instance, YOLOv8 replaced 
the C3  module with a C2f module and implemented 
a decoupled head structure to reduce computational 
redundancy. YOLOv11 introduced enhanced backbone 
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and neck architectures, improving the C3k2  module 
and adding a C2PSA module to strengthen feature 
extraction capabilities, though multi-scale target detec-
tion in extreme scenarios remains challenging.

Current object detection models predominantly rely 
on CNN for feature extraction. While effective at local 
feature processing, CNNs’ limited receptive fields 
constrain their ability to capture global contextual infor-
mation. Additionally, important shallow features may 
be lost through successive convolutional and pooling 
operations, potentially degrading model performance. 
The ViT architecture addressed these limitations by 
abandoning traditional CNN designs in favor of image 
patching and encoding mechanisms that better capture 
global relationships. ViT achieved top-tier performance 
on large-scale datasets like ImageNet [13], establish-
ing the foundation for self-attention mechanisms in 
computer vision. Notably, the Detection Transformer 
(DETR) [14] became the first fully end-to-end trained 
detection model, combining CNN and Transformers 
to reformulate object detection as a set prediction 
problem. This innovation eliminated traditional anchor 
mechanisms, simplified the detection pipeline, and 
improved accuracy.

However, as model performance improves, struc-
tural complexity increases, leading to higher training 
and deployment costs. Recent research has addressed 
these challenges through various innovations. The 
SMCA model [15] introduced a spatial-modulated 
co-attention mechanism that improved DETR's con-
vergence, reducing required training epochs from 500 
to 108 while enhancing performance. Similarly, the 
Swin Transformer [16] implemented a shifted window 
mechanism to reduce computational complexity and 
improve local feature extraction.

A fundamental challenge in object detection involves 
effective multi-scale feature representation and pro-
cessing. While low-level features offer high resolution 
and detailed information, high-level features provide 
stronger semantic representations with reduced noise. 
Multi-scale feature fusion enhances model comprehen-
sion by integrating information across different layers, 
enabling the capture of complex patterns. Early fusion 
methods relied on computationally intensive image 
pyramids [6], which generated multi-resolution inputs 

through iterative downsampling. With deep learning 
advancements, Lin et al. [17] proposed the feature 
pyramid network (FPN), which creates multi-scale rep-
resentations through top-down and lateral connections 
between different feature levels, significantly improv-
ing detection accuracy. Building on this foundation, 
Hu et al. [18] incorporated squeeze-and-excitation 
(SE) attention mechanisms to adaptively weight chan-
nel features, emphasizing the most discriminative  
information.

3 Proposed method

This paper presents AMC-YOLO, an enhanced hybrid 
model based on the YOLOv11n architecture. As 
illustrated in Fig.  2, AMC-YOLO incorporates three 
key improvements over the original YOLOv11n: 
(1) The enhanced AGConv module replaces the 
original C3k2  module to improve feature extraction 
capability and robustness while reducing computa-
tional complexity; (2) in the super position polynomial 
factorization (SPPF) layer, we implement the MDSC 
module, which utilizes shared 3×3 convolutions with 
dilation rates of 1, 3, and 5 to progressively expand 
the receptive field while minimizing computational 
redundancy, thereby effectively capturing multi-scale 
contextual information. (3) A novel CCFM is designed 
to optimize feature fusion through adaptive feature 
reorganization. It emphasizes discriminative elements 
while suppressing less relevant features, consequently 
enhancing the representational power of feature maps. 
Compared to YOLOv11n, AMC-YOLO maintains 
deployment efficiency while significantly improving 
detection accuracy and robustness in traffic scenarios. 
The following sections detail these architectural inno-
vations.

3.1 Attention-gate convolution

The YOLOv11 network is widely used in real-time 
object detection tasks due to its fast detection speed and 
high accuracy. The diversity of traffic scenes introduces 
complex visual features into the detection video stream, 
which leads to limited model recognition features. In 
contrast, Vision Transformers can comprehensively 
capture dependencies between image feature blocks 
and retain sufficient spatial information through their 
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unique multihead self-attention mechanism, which is 
crucial for object detection tasks. To enhance the fea-
ture extraction capability and robustness of the model 
while reducing computational redundancy, we design 
the attention-gate convolution (AGConv) module, 
as shown in Fig.  3. The AGConv module is a feature 
enhancement module composed of a convolutional 
additive self-attention and a Convolutional gated lin-
ear unit. In this work, the feature is first divided into 
blocks. Then processed in parallel along the channel 
dimension through the query and key branches for 
similarity computation, generating attention weights. 
This method maintains original feature dimensions 

across branches and reduces computational costs. The 
operational procedure is described as follows:

φ φ+Sim( , ) = ( ) ( )Q K Q K � (1)

Among them, Q, K, and V are obtained through 
independent linear transformations, such as Q=Wqx, 
K=Wkx, V=Wvx. where, Φ(·) represents the context 
mapping function, which incorporates basic informa-
tion interactions.

In addition, we incorporate both spatial and chan-
nel attention mechanisms to perform hierarchical 
processing on feature maps, enhancing the model's 
sensitivity to critical features. The input feature maps 

Figure 2 The overall structure of the AMC-YOLO model network proposed in this paper. 
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first undergo a 3×3 convolution to extract local spatial 
characteristics, complemented by normalization. A 
ReLU activation function is introduced to improve 
adaptability to complex spatial patterns. For channel 
dimensionality reduction, a 1×1 convolution is applied 
to eliminate redundant information. The spatial 
attention mechanism employs multiple stacked con-
volutions to progressively abstract spatial information, 
emphasizing target region saliency through edge and 
texture enhancement. This is achieved by generating 
spatial attention weight maps using sigmoid activation 
that maps outputs to [0, 1]. Meanwhile, the channel 
attention mechanism applies global average pooling to 
the input feature map, compressing the spatial dimen-
sion and aggregating global information. It then 
restores information density using a 1×1 convolution. A 
sigmoid function outputs the channel attention weight 
vector, identifying channels with significant texture and 
semantic importance. This method enhances feature 
representation efficiency by promoting information 
complementarity among channels.

3.2 C3k2-AGConv

The C3k2  module serves as an efficient and robust 
feature extraction component in YOLOv11n, employ-
ing variable convolution kernels (including 3×3 and 
5×5 sizes) combined with a channel separation strategy 
to enhance feature extraction capabilities. However, 
under hazy weather conditions, the module exhibits 
limitations in feature extraction due to complex image 
backgrounds and substantial variations in target 
shapes. Since the backbone network's primary function 
involves extracting both shallow features and global 
context from raw input images, which is essential for 
comprehensive scene understanding, we enhance the 
original C3k2  module by integrating the AGConv 
component, proposing the improved C3k2-AGConv 
variant. This enhanced module retains AGConv's 
advantages in effectively capturing and emphasizing 
edge details within feature maps while simultane-
ously aggregating global feature information. In our 
implementation, we systematically replace all original 
C3k2 modules in YOLOv11’s backbone network with 
the proposed C3k2AGConv modules, as illustrated  
in Fig. 4.

The integration of AGConv substantially enhances  
the C3k2  module's sensitivity to gradient variations, 
enabling the model to capture more discriminative 
feature representations. This improvement leads 
to superior performance in identifying boundaries 
and fine details of multi-scale targets, particularly 
in complex scenarios. The processing pipeline oper-
ates as follows: Input feature maps first undergo 1×1  
convolution to double the channel dimensionality. A 
channel-wise splitting operation then divides these maps 
into two parallel branches with equal channels, allowing 
independent enhancement of edge and texture features. 
Each branch is subsequently processed by the AGConv 
module, which comprises two key components: (1) the 
convolutional additive self-attention mechanism for 
edge and texture extraction, and (2) the convolutional 
gated linear unit for effective feature aggregation and  
representation.

Following feature enhancement, both branches 
pass through a 1×1 convolutional layer for channel 
dimension adjustment before being fused with the 
original feature maps. The resulting output con-
tains significantly enriched edge details and texture 
information, providing more discriminative inputs 
for subsequent detection tasks. This split-process-
fuse architecture enables the C3k2-AGConv module 
to independently optimize and combine edge and 
texture features, ultimately improving multi-scale 
target detection performance under challenging hazy  
conditions.

Figure 4 The C3k2-AGConv structure diagram. 
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3.3 Multi-dilation shared convolution

Traffic detection targets frequently exhibit significant 
deformations in video streams or images. Since single 
convolutional neural network layers possess limited 
feature representation capacity, robust multi-scale pro-
cessing capabilities become essential for target detection 
models. The SPPF module, a crucial component in 
YOLOv11, effectively captures contextual information 
through efficient spatial pyramid pooling operations, 
enabling precise object detection while maintaining 
high processing speed. However, YOLOv11’s strict 
image size requirements during training lead to partial 
semantic information loss during pooling operations. 
Moreover, the SPPF module's structural complexity 
exceeds that of conventional convolutional layers, 
imposing greater hardware resource demands.

To overcome these limitations, we propose the 
MDSC module (Fig. 5). Our design incorporates three 

3×3 convolutional kernels with progressively increas-
ing dilation rates (1, 3, 5), systematically expanding 
the receptive field [19]. As demonstrated in Fig.  6, 
this configuration enables effective multi-scale feature 
extraction and broader contextual information capture. 
Rather than maintaining separate weights for each 
dilation rate, we implement shared convolutional 
layers where all three kernels utilize identical weight 
parameters, significantly reducing trainable param-
eters while enhancing model efficiency. The module 
further employs dual 1×1 convolutional kernels for 
efficient channel dimension adjustment and feature 
fusion, preserving critical feature information while 
minimizing parameter overhead.

3.4 Cross-channel fusion module

Under hazy weather conditions, target objects fre-
quently experience occlusion, overlap, or reduced 
visibility, significantly challenging detection accuracy. 
The YOLOv11 architecture employs a PANet-based 
neck network (combining FPN and PAN structures) [20],  
where the feature pyramid network (FPN) augments 
shallow features with high-level semantic information 
through top-down propagation, facilitating multi-scale 
and small target detection. However, YOLOv11’s con-
ventional concatenation-based feature fusion suffers 
from equal weighting limitations, potentially losing 
critical semantic information during processing. To 
resolve this limitation, we propose the CCFM that 
performs adaptive feature reweighting, emphasizing 
discriminative features while suppressing less informa-
tive ones. As demonstrated in Fig. 7, the CCFM module 
enhances feature map discriminability through the 
following computational pipeline [21]:Figure 5 The MDSC model structure diagram. 
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⊕ir iv=F F F � (2)

Then, feed F into an attention module composed of 
convolution and pooling operations to generate new 
attention weights F̂ . This process effectively preserves 

the main features of F while suppressing noise. The 
computational process is as follows:

−ˆ = PW Conv (GAP( ))F Fn � (3)

After generating the attention weights, we apply 
element-wise multiplication to weight the original 
features. The resulting weighted features are then 
concatenated to enhance their representation. The com-
putational process is as follows:

� (4)

� (5)

� (6)

where, ⊕ denotes element-wise summation, ⊗ repre-
sents element-wise multiplication, and PW−Convn 
indicates n cascaded point-wise convolutional layers. 
The operation C(·) performs channel-wise concatena-
tion, while δ(·) and GAP(·) denote the sigmoid activation 
function and global average pooling operation, respec-
tively. The CCFM module employs residual connections 
to strengthen feature information flow, enabling effec-
tive integration of detailed spatial features with 
high-level semantic context. This architecture is specif-
ically designed to guide the model in learning 

discriminative features for target detection, conse-
quently enhancing the overall detection performance.

4 EXPERIMENTS

4.1 Datasets

The methods and models presented in this paper are 
trained and evaluated on our customized dataset. The 
dataset consists of 8792 images collected from road 
surveillance equipment at different times, capturing 
scenes such as urban expressways and highways. 
Due to variations in collection times and weather 
conditions, the original images exhibit significant 
differences in noise, brightness, and contrast, ensuring 
the model's generalization capability. We annotated the 
bounding boxes of objects in the dataset images using 
LabelImg in the Microsoft common objects in context  
(MS COCO) [22] dataset format, with a total of 6 cat-
egories: car, truck, pedestrian, bus, motorcycle, and 
bicycle. The dataset was split into training and valida-
tion sets in a 7:2 ratio.

4.2 Experimental environment

The hardware and environment settings used in this 
experiment are shown in Table 1 below. The graphics 
processing unit is equipped with an Nvidia GeForce 
RTX 4070 GPU, featuring 12 GB of dedicated memory to 
support large-scale parallel computing tasks. To ensure 
sufficient model convergence while preventing overfit-
ting, the experiment was conducted with 300 training 
epochs. The batch size was set to 32 to balance com-
putational efficiency and memory usage. During 
data loading, the CPU utilized 2 worker threads. The 

Figure 7 The CCFM model structure diagram. 
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Table 1 The hardware and software environment configuration of 
this experiment.

Software/hardware Version

Operating system Windows 11 professional

Central processing unit (CPU) Intel Core i7-13790F (2.1GHz)

Graphics card (GPU) Nvidia GeForce RTX 4070

Memory 12 GB

Programming language version Python-3.10.14

GPU parallel computing platform CUDA 12.1

Deep learning framework Torch-2.2.2+cu121
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learning rate was set to 0.01.

4.3 Model results and analysis

In this experiment, five evaluation metrics were selected 
to measure model performance: precision, recall, mean 
average precision (mAP), Parameters, and frames per 
second (FPS). Precision is the most fundamental eval-
uation metric for object detection models, representing 
the proportion of correctly predicted samples out of 
the total samples. Recall indicates the proportion of 
true positive examples that are correctly predicted as 
positive by the classifier. The specific expressions are 
as follows:

+
TP=

TP FP
P � (7)

+
TP=

TP FN
R � (8)

Here, TP represents the number of true positives, FP 
represents the number of false positives, and FN rep-
resents the number of false negatives. The mAP (i.e., 
mean average precision) value is applicable to various 
types of datasets, including custom datasets. It com-
prehensively evaluates the model's performance by 
calculating the average area under the precision-recall 
curves for all categories. The specific expression is as 
follows:

∫
1

0
AP = ( )dP R r � (9)

∑ =1

classes
mAP =

k
ii

AP

k
� (10)

IoU represents the ratio of the intersection to the union 
of the model's predicted bounding box and the ground 
truth bounding box, and it is used to determine the 

accuracy of the bounding boxes in object detection mod-
els. The mAP@0.5 and mAP@0.5:0.95 are commonly 
used to evaluate the overall performance of a model. 
mAP@0.5 is the mean average precision calculated with 
the intersection over union (IoU) threshold set to 0.5, 
while mAP@0.5:0.95 is the average mAP computed 
across different IoU thresholds ranging from 0.5 to 0.95 
with a step size of 0.05.

Parameters refer to the adjustable weights learned 
by the model during training. These weights control 
the model's response to input data, determining its 
capabilities, and are a key indicator of the complexity 
of deep learning models. Generally, the more complex 
the model, the larger the number of parameters, which 
means the model can store and process more informa-
tion. However, this also requires more computational 
resources and training time. Therefore, balancing 
model complexity and performance is crucial.

FPS refers to the number of images the model can 
process per unit of time, typically expressed as frames 
per second. This metric is particularly important in 
real-time processing scenarios such as video surveil-
lance and autonomous driving. A higher FPS value 
indicates stronger real-time responsiveness of the  
model.

We conducted comprehensive ablation experiments 
to further analyze the effects of each improvement. 
Tables  2 and 3  show the changes in precision for 
the six target categories and the overall perfor-
mance feedback under different enhancements. The 
C3k2 module is a critical feature extraction module in 
the YOLOv11 model.

4.4 C3k2-AGCov Comparative Experiments

To thoroughly evaluate the effectiveness of our 
proposed C3k2-AGConv module, we conducted 

Table 2 The comparison of different modifications to C3k2 module.

Model Pall Rall mAP@0.5 mAP@0.5:0.95 Params (M) FPS (GPU)

YOLOv11n 0.882 0.832 0.901 0.754 2.58 322.6

YOLOv11n-C3k2-faster 0.889 0.825 0.898 0.732 2.28 348.0

YOLOv11n-C3k2-faster(EMA) 0.887 0.825 0.901 0.765 2.30 341.5

YOLOv11n-C3k2-DBB 0.891 0.828 0.902 0.756 2.6 317.8

YOLOv11n-C3k2-AGConv 0.908 0.839 0.909 0.768 2.45 384.1
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systematic architectural modifications to the YOLOv11 
baseline and performed comparative experiments with 
alternative enhancement approaches. Our investiga-
tion focused on improving the Bottleneck component 
within the C3k2 module through three distinct meth-
odologies.

The diverse branch block (DBBNet) approach imple-
ments a multi-branch architecture with heterogeneous 
receptive fields, combining convolutional sequences, 
multi-scale convolutions, and average pooling to enrich 
feature representation. While this method achieved a 
marginal improvement in mAP@0.5:0.95 from 0.901 
to 0.902 with enhanced Recall and Precision metrics, 
it incurred increased computational costs reflected in 
reduced FPS performance.

The partial convolution (FasterNet) strategy employs 
selective channel processing to reduce computational 
overhead while maintaining original channel dimen-
sionality. Experimental results demonstrated an 
11.6% reduction in parameters (from 2.58 M to 2.28 M) 
and improved FPS, though at the cost of decreased 
mAP@0.5 and mAP@0.5:0.95 performance. Subsequent 
attempts to incorporate EMA attention mechanisms 
yielded only limited improvements.

Our proposed AGConv method integrates multi-head 
self-attention with convolutional gating mechanisms to 
enable parallel learning of complementary attention 
patterns across kernel space dimensions. This approach 
delivered comprehensive performance enhancements, 
including a 2.6% increase in Precision (0.882 to 0.908), 
1.4% improvement in mAP@0.5:0.95 (0.754 to 0.768), 
and significant FPS gains, while simultaneously 
reducing parameter redundancy and ineffective com-
putations. Based on these superior results, we adopted 
AGConv as our optimal enhancement strategy, naming 
the improved module C3k2AGConv. The complete 
comparative experimental data are presented in  
Table 2.

4.5 Ablation experiment

4.5.1 Improved strategy ablation

This paper presents the AGConv module as an enhance-
ment to YOLOv11’s feature extraction capability 
through the replacement of the original C3k2 module 
with our proposed C3k2-AGConv variant. Compre-
hensive ablation studies compared the C3k2-AGConv 
against both the baseline C3k2 module and a C3k2-CAS 
variant (lacking the CGLU component), with results 
detailed in Table 3. The experimental data reveal that 
while the C3k2-CAS module improves model accu-
racy and robustness, confirming the effectiveness of 
multi-head self-attention mechanisms for inter-layer 
information flow, it incurs significant parameter infla-
tion. In contrast, the C3k2-AGConv module achieves 
superior performance across all accuracy metrics while 
actually reducing parameter counts below the original 
model's level. This demonstrates that integrating con-
volutional gating units with self-attention mechanisms 
enables efficient dimensionality reduction and feature 
reorganization, preserving critical information without 
increasing computational overhead.

To assess the MDSC module's multi-scale detec-
tion capability, we evaluated three dilation rate 
configurations ([1,1,1], [3,3,3], [5,5,5]) against the 
original YOLOv11, as presented in Table 4. The [1,1,1] 
variant improved Pall from 0.882 to 0.889 and Rall from 
0.832 to 0.838, validating dilated convolution's ability 
to capture fine details while maintaining essential 
information. However, higher uniform dilation rates 
showed diminishing returns, with [3,3,3] and [5,5,5] 
configurations yielding negligible gains or perfor-
mance degradation. Significantly, the mixed-rate [1,3,5] 
scheme achieved optimal results: mAP@0.5 increased 
to 0.906 and mAP@0.5:0.95 reached 0.762, with across-
the-board metric improvements.

Further ablation studies comparing CCFM with 
alternative feature pyramid structures (Table  5) 

Table 3 The ablation experiment of the AGConv module.

Model Pall Rall mAP@0.5 mAP@0.5:0.95 Parameters (M) FPS (GPU)

YOLOv11n 0.882 0.832 0.901 0.754 2.58 322.6

YOLOv11n-C3k2-CAS 0.906 0.835 0.908 0.761 2.62 337.0

YOLOv11n-C3k2-AGconv 0.908 0.839 0.909 0.768 2.45 384.1
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demonstrated consistent performance gains over the 
baseline FPN. Notably, CCFM outperformed both 
PAFPN and BIFPN, confirming its superior capa-
bility in fusing shallow and deep features through 
cross-channel integration and adaptive reorganiza-
tion. This enriched semantic representation enables 
precise multi-scale target detection. In conclusion, 
our AGConv, MDSC, and CCFM modules collec-
tively represent optimal solutions for balanced model 
optimization, demonstrating superior detection perfor-
mance, computational efficiency, and overall system  
balance.

4.5.2 Model global ablation

We conducted comprehensive ablation experiments 
to systematically analyze the contributions of each 
improvement. Tables  6 and 7 present the precision 

changes for six object categories and overall perfor-
mance metrics under different modifications. Module 
with the C3k2-AGConv, the results indicate that the 
overall mAP@0.5 increased from 0.901 to 0.909, and 
mAP@0.5:0.95 rose from 0.754 to 0.768 compared to the 
baseline model (Table 5). Additionally, the precision 
for trucks improved from 0.825 to 0.852, for buses from 
0.854 to 0.882, and for motorcycles from 0.868 to 0.918 
(Table 6). These results demonstrate that for traffic 
object detection in large-scale and complex scenarios, 
the self-attention mechanism can capture global con-
textual relationships in images through neighborhood 
learning, enhancing semantic discriminability and 
mitigating category confusion.

When we replaced the SPPF module with the MDSC 
module, mAP@0.5 increased from 0.901 to 0.906, 

Table 4 Comparison of different dilation rates in the MDSC module.

Model Dilation rate Pall Rall mAP@0.5 mAP@0.5:0.95

YOLOv11n [0,0,0] 0.882 0.832 0.901 0.754

YOLOv11n-MDSC [1,1,1] 0.889 0.836 0.902 0.744

YOLOv11n-MDSC [3,3,3] 0.885 0.833 0.902 0.752

YOLOv11n-MDSC [5,5,5] 0.886 0.833 0.903 0.750

YOLOv11n-MDSC [1,3,5] 0.898 0.845 0.906 0.762

Table 5 Comparison of different feature pyramid networks.

Model Network Pall Rall mAP@0.5 mAP@0.5:0.95

YOLOv11n FPN 0.882 0.832 0.901 0.754

YOLOv11n PAFPN 0.893 0.838 0.902 0.753

YOLOv11n BIFPN 0.891 0.833 0.901 0.746

YOLOv11n CCFM 0.905 0.847 0.908 0.768

Table 6 The ablation experiments on the comparative results of six categories.

C3k2-AGConv MDSC CCFM Car Truck Person Bus Motor Bicycle Pall Rall

- - - 0.912 0.825 0.931 0.854 0.868 0.905 0.882 0.832

√ - - 0.909 0.852 0.933 0.882 0.918 0.904 0.908 0.839

- √ 0.921 0.831 0.937 0.912 0.893 0.899 0.898 0.845

- - √ 0.922 0.853 0.942 0.902 0.894 0.919 0.905 0.847

√ √ 0.915 0.850 0.940 0.908 0.908 0.877 0.905 0.836

√ - √ 0.928 0.863 0.948 0.916 0.910 0.925 0.910 0.838

- √ √ 0.924 0.846 0.945 0.915 0.901 0.916 0.903 0.847

√ √ √ 0.937 0.860 0.953 0.929 0.931 0.924 0.923 0.847
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and mAP@0.5:0.95 rose from 0.754 to 0.762 (Table 7), 
while the number of parameters decreased by 0.3 M. 
Under the condition of keeping other model structures 
unchanged, we used the SPP, SPPF, and MDSC mod-
ules as the feature pyramid pooling modules of the 
model, respectively, and calculated their receptive field 
sizes, as shown in Table 8. The results in Table 8 show 
that setting the dilation rate significantly expands the 
effective receptive field of the convolutional kernel, 
thus enhancing its ability to capture global contextual  
information.

4.6 Comparative experiments

To evaluate the feasibility, authenticity, and robust-
ness of the ACM-YOLO model, we trained and tested 
the ACM-YOLO model alongside other popular 
object detection models on our proposed custom  
dataset [23–25]. The experimental results of Table  9 
show that the YOLO series exhibits significant perfor-
mance advantages compared to current state-of-the-art 
methods. The parameter count and detection frame 
rate of YOLO models are significantly lower than those 

Table 7 The ablation experiments on collaborative effects of AMC-based Multi-module Components.

C3k2-AGConv MDSC CCFM mAP@0.5 mAP@0.5:0.95 Params (M) FPS (GPU)

- - - 0.901 0.754 2.7 322.6

√ - - 0.909 0.768 2.5 384.1

√ - 0.906 0.762 2.4 360.5

- - √ 0.908 0.768 2.6 373.8

√ √ - 0.907 0.773 2.5 380.7

√ - √ 0.911 0.770 2.6 359.4

- √ √ 0.909 0.766 2.8 312.5

√ √ √ 0.912 0.781 2.6 376.2

Table 8 The comparison of receptive field size.

t=20% t=30% t=50% t=99%

SPP 1.5% 2.8% 7.4% 61.78%

SPPF 1.6% 2.9% 7.4% 91.2%

MDSC 2.7% 4.7% 10.6% 92.3%

Table 9 The comparison of different modifications.

Model Pall Rall mAP@0.5 mAP@0.5:0.95 Params (M) FPS (GPU)

SSD 0.862 0.737 0.880 0.745 24.1 186.2

Faster R-CNN 0.881 0.805 0.875 0.695 41.3 57.9

Cascade R-CNN 0.885 0.810 0.896 0.764 61.7 53.3

RT-DETR-ResNet50 0.879 0.798 0.878 0.763 61.5 97.3

YOLOv5n 0.864 0.778 0.870 0.682 2.64 425.6

YOLOv7 0.872 0.744 0.861 0.695 37.2 253.8

YOLOv7-tiny 0.868 0.789 0.873 0.737 6.0 312.4

YOLOv8n 0.860 0.796 0.875 0.703 3.1 344.8

YOLOv10n 0.830 0.766 0.854 0.665 2.3 290.3

YOLOv11 (Baseline) 0.882 0.832 0.901 0.754 2.6 322.6

ACM-YOLO (ours) 0.923 0.847 0.912 0.781 2.7 376.2
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Figure  8 The visualization analysis of different models: (a) telephoto: original, (b) telephoto: YOLOv11n, (c) telephoto: AMC-YOLO,  
(d) shortphoto: original, (e) shortphoto: YOLOv11n, (f) shortphoto: AMC-YOLO, (g) ImgDef: original, (h) ImgDef: YOLOv11n,  
(i) ImgDef: AMC-YOLO, (j) UltraSP: Original, (k) UltraSP: YOLOv11n, and (l) UltraSP: AMC-YOLO. 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

of two-stage object detection models such as SSD and 
Faster R-CNN, while maintaining model accuracy 
and robustness. Notably, compared to the baseline 
model YOLOv11, our proposed ACM-YOLO model 
improved overall precision and recall from 0.882 and 
0.832 to 0.923 and 0.847, respectively. The mAP@0.5 
and mAP@0.5:0.95 reached 0.912 and 0.781, repre-
senting improvements of 1.1% and 3.3%, respectively, 
demonstrating a significant enhancement in overall 
performance.

4.7 Visualization analysis

To validate the superior feature extraction capability 
of the proposed improved AMC-YOLO model in this 
paper, we visualized the heatmaps and detection results 
of the YOLOv11n and AMC-YOLO models across dif-
ferent scenarios. These visual feature maps represent the 
density or magnitude of values in the data through color 
mapping. As shown in Fig. 8, compared to YOLOv11n, 
AMC-YOLO displays a broader range of bright colors, 
indicating enhanced feature representation and 
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reflecting the model's attention to image regions. From 
various perspectives, the robustness and accuracy of 
the AMC-YOLO model are significantly higher than 
those of YOLOv11n. In high-angle views, YOLOv11n 
misclassifies a car as a truck, while AMC-YOLO 
correctly distinguishes between cars and trucks. In 
normal-angle views, the AMC-YOLO model can detect 
targets at greater distances. In low-angle views, AMC-
YOLO demonstrates stronger detection capabilities for 
heavy objects and accurately detects pedestrians on 
overpasses. In nighttime scenarios, AMC-YOLO still 
achieves accurate multi-target recognition. Therefore, 
the improved AMC-YOLO model proposed in this 
paper exhibits better feature extraction capabilities and 
stronger robustness.

5 Conclusion

Under haze weather conditions, images captured by 
road surveillance equipment exhibit overwhelming 
characteristics, including significant scale variations 
and complex backgrounds filled with distractors, pos-
ing substantial challenges for general object detectors 
based on conventional convolutional networks. This 
paper proposes an improved traffic object detection 
algorithm, AMC-YOLO, based on YOLOv11. Experi-
mental results demonstrate that AMC-YOLO achieves 
higher accuracy and generalization capabilities across 
diverse traffic scenarios while excelling in model 
parameter count, computational load, detection accu-
racy, and speed. It significantly enhances the reliability 
of traffic detection under haze weather conditions. 
Furthermore, the model achieves a reasonable balance 
between lightweight design and high precision, pro-
viding robust support for deploying traffic detection 
systems on roadside devices. Although AMC-YOLO 
has achieved notable results, its performance can be 
further improved through new model architectures, 
optimization algorithms, and hardware advancements. 
With further research, future applications could expand 
to real-time tracking, accident identification, and other 
areas to enhance traffic safety.
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